Fig. 7. A = A,. A superstable 4-cycle.
should be compared with all of Fig. Sa.
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Figures 7a and b depict this situation for
f2 and f*, respectively. When A increases
further, the maximum of f* at x = %, now
moves up, developing a fixed point with
negative slope. Finally, at A; when the
slope of this fixed point (as well as the
other three) is again —1, each fixed point
will split into a pair giving rise to an 8-
cycle, which is now stable. Again, f® = f*
o f4 and f* can be viewed as fundamen-
tal. We define A, so that x =¥, again is a
fixed point, this time of f%, Then at A, the
slopes are —1, and another period doubl-
ing occurs. Always,

=0 2", 27

Provided that a constraint on the range
of A does not prevent it from decreasing
the slope at the appropriate fixed point
past —1, this doubling must recur ad
infinitum.

Basically, the mechanism that f ™ uses
to period double at A, is the same
mechanism that f2* will use to double
at A, ,. The function f 2+ s constructed
from 2 by Eq. (27), and similarly 2"+
will be constructed from f2"*'. Thus,
there is a definite operation that, by
acting on functions, creates functions; in
particular, the operation acting on f2" at
Autp (or better, f2" at A,) will determine
2" at A, ,. Also, since we need to keep
track of f2" only in the interval including
the fixed point of f2" closest to x = ¥, and
since this interval becomes increasingly
small as A increases, the part of f that
generates this region is also the restric-
tion of f to an increasingly small interval
about x = Y. (Actually, slopes of f at
points farther away also matter, but
these merely set a “scale,” which will be
eliminated by a rescaling.) The behavior
of f away from x = Y, is immaterial to
the period-doubling behavior, and in the
limit of large n only the nature of fs
maximum can matter. This means that
in the infinite period-doubling limit, all
functions with a quadratic extremum will
have identical behavior. [f”(!,) # 0 is the
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generic circumstance.] Therefore, the
operation on functions will have a stable
fixed point in the space of functions,
which will be the common universal limit
of high iterates of any specific function.
To determine this universal limit we
must enlarge our scope vastly, so that
the role of the starting point, x,, will be
played by an arbitrary function; the at-
tracting fixed point will become a univer-
sal function obeying an equation im-
plicating only itself. The role of the func-
tion in the equation x, = f(x,) now must
be played by an operation that yields a
new function when it is performed upon
a function. In fact, the heart of this
operation is the functional composition
of Eq. (27). If we can determine the ex-
act operator and actually can solve its
fixed-point problem, we shall understand
why a special number, such as § of Eq.
(3), has emerged independently of the
specific system (the starting function) we
have considered.

The Universal Limit of High Iterates

In this section we sketch the solution
to the fixed-point problem. In Fig. 7a, a
dashed square encloses the part of f? that
we must focus on for all further period
doublings. This square should be com-
pared with the unit square that com-
prises all of Fig. 5a. If the Fig. 7a square
is reflected through x = %, y = Y, and
then magnified so that the circulation
squares of Figs. 4a and 5a are of equal
size, we will have in each square a piece
of a function that has the same kind of
maximum at x = %, and falls to zero at
the right-hand lower corner of the cir-
culation square. Just as f produced this
second curve of f? in the square as A in-
creased from A, to A, so too will f2
produce another curve, which will be
similar to the other two when it has been
magnified suitably and reflected twice.
Figure 8 shows this superposition for the |
first five such functions; at the resolution
of the figure, observe that the last three !
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